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Problem Description

Objective

Assign job stages of DAG jobs in heterogeneous environment to
minimize the makespan.

a. DAG jobs

• Vertex: A Job stage consisting of
multiple parallel tasks in the DAG.

• Edge: Data shuffle between different
job stages with a certain direction.

A job stage can be selected only when its
predecessors are all finished or under
executing!
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Problem Description

Objective

Assign job stages of DAG jobs in heterogeneous environment to
minimize the makespan.

b. Heterogeneous Environment

Executors that are different in:

• computing speed

• memory size

• transition bandwidth
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Challenges

a. Information representation
• Complex dependencies. All the job stages with their dependencies must

be taken into consideration.
• Dynamic DAG structure. The job stages arrive continuously, making

the dag structure change over time.

b. scheduling Decision
• A huge decision space. The scheduler assigns all job stages (usually

> 103) to available executors (usually > 102).
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Overview

A two phase framework:

a. Job stage selection. Select a job stage by a GNN from all executable
job stages.

b. Executor allocation. Allocate the selected job stage to an executor
according to a heuristic method.

Why two phase?

a. A much smaller decision space for each phase.

b. Heuristic method performs good enough for executor allocation in our
experiment.
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Design of the GNN

a. Information embedding.

For each executable job stage, the information contained in its successors
and the vertices leading to its successors is aggregated and transferred by
a two level neural network.
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Design of the GNN

b. Information aggregation.

The information of vertices is pooled to generate DAG summaries, which is
a representation for a single DAG job. Moreover, all DAG summaries are
passed through a neural network to generate a global summary.
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Design of the GNN

c. Framework of the GNN

• Job information and executor information are the raw input of
the GNN.

• Afterwards, the job information is processed by the GNN and
three representations are generated.

• Finally, the GNN outputs the probabilities of each executable
job stage being selected.
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Executor Allocation

Briefly, the executor allocation phase is to find the executor that can finish
the job stage the earliest.

To start a job stage on a chosen executor, we can:

a. wait for the predecessor job stage to be finished and the needed data
transferred to the executor.

b. duplicate the predecessor to the executor and execute it.
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Executor Allocation

To assign the i th job stage to an executor:

a. calculate the earliest start time for each available executor.

b. finish time = start time + time to execute the ith job stage.

c. choose the executor with the earliest finish time.
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Algorithm Training

We adopt a reinforcement learning paradigm to train the algorithm.

Markov Decision Process3

In the k th transition, we have:

State sk : Information of DAG jobs and executors.

Action ak : select one job stage.

Reward rk : rk = −(tk − tk−1), where tk is the finish time of the k th
job stage.

3Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 2014.
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Algorithm Training

We leverage the actor-critic4 framework to train our algorithm.

Algorithm 1 Training process
Generate N job stages randomly
Initialize ω
Initialize θ
for k ∈ [0,N] do

Receive environment information sk
Select action (job stage) ak ∼ πθ
Select executor
Execute action ak and observe reward rk , state sk+1
Estimator error:

ϵ = (Qω − (rk + Eak+1∼πθ
γQw (sk+1, ak+1))

2

Update the critic
ωk+1 ← ωk − αQ∇ωϵ

Update the actor policy:
θk+1 ← θk − απ∇θ log πθ (sk , ak )Qω(sk , ak )

end for

4Vijay Konda and John Tsitsiklis. “Actor-critic algorithms”. In: Advances in neural information processing systems 12
(1999).
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Experiment Results

Metrics

a. Makespan: time to finish a DAG job.

b. Normalized Makespan (to compare performance on different DAG
jobs):

• Speedup: a higher speedup is better
• Schedule length ratio (SLR): a lower SLR is better

Settings

a. Our framework is named Lachesis.

b. Dataset: the experiment dataset is generated from TPC-H5 workload.

c. Baselines: four Baselines including three heuristic method and
Decima6.

5TPC-H. The TPC-H Benchmarks. Jan. 25, 2021. url: www.tpc.org/tpch/ (visited on 2021).
6Hongzi Mao et al. “Learning Scheduling Algorithms for Data Processing Clusters”. In: Proceedings of the ACM Special

Interest Group on Data Communication. SIGCOMM ’19. Beijing, China: Association for Computing Machinery, 2019, 270–288.
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a. Experiment results on small scale jobs.

b. Experiment results on large scale jobs

• The graphs above show that Lachesis out performs all baselines on both
small scale jobs and large scale jobs.

• The advantage of Lachesis is significant on large scale jobs.
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Conclusion and Future work

Conclusion:

a. We introduce a two phase framework for DAG job scheduling.

b. The experiment results indicate that our framework effectively reduce
the makespan comparing to baselines.

Future work

a. A lighter model to accelerate scheduling.

b. More effective algorithm for executor allocation.
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